Размещения и сочетания.

Сколько вариантов подбора четырехзначного кода, состоящего только из цифр? А из букв латинского алфавита? Прочитав данную статью до конца, вы сможете решить данные задачи без проблем. Итак, начнем.

Размещениями называют множества, составленные из n элементов по m элементов, которые отличаются либо составом элементов, либо их порядком.

Число всех возможных размещений, если все n элементы различны, определяется формулой:

 A=n(n-1)(n-2)...(n-m+1).

Число размещений по m с повторениями из n элементов равно nm. Таким образом: A(c повторениями)=nm.

Примеры:

  1. Сколько способов выбрать старосту и заместителя старосты из 25 кандидатов?
    Решение:
    25•24=600
    Ответ: 600.
  2. Сколькими способами девочка Кристи может разложить 6 кукол по трём ящикам, если каждый ящик может вместить все куклы?
    Решение:
    A=312 =531441
    Ответ: 531441.

Сочетаниями из n элементов по m называются множества, содержащие m элементов из числа n заданных, и которые отличаются хотя бы одним элементом.

Число сочетаний из n элементов по m обозначают: С(m,n).

Число всех возможных сочетаний, если все n элементы различны, определяется формулой:

С(m,n)=n!/(m!(n-m)!).

Число сочетаний с  повторениями равно: С(m,n) с повт. = С(m,n+m-1).

Полагают, что С(0,n)=1.

Для количества сочетаний справедливы равенства:

  1. С(m,n)=C(n-m,n),
  2. C(m+1,n+1)=C(m,n)+C(m+1,n),
  3. C(0,n)+C(1,n)+C(2,n)+...+C(n-1,n)+C(n,n)=2(число всех подмножеств множества, состоящего из n элементов равно 2n).

Примеры:

  1. Сколько способов выбрать три лица на три одинаковые должности из 25 кандидатов?
    Решение:
    С(3,25)=25!/(3!(22)!)=(23•24•25)/6=2300
    Ответ: 2300.
  2. В почтовом отделении продаются открытки 10 сортов. Сколькими способами можно купить в нем 12 открыток?
    Решение:
    С(12,10)=С(12,12+10-1)=С(12,21)=21!/(12!(21-12)!)=293930
    Ответ: 293930.

Вам будет интересно

Добавить комментарий

Ваш e-mail не будет опубликован.

:-[ (B) (^) (P) (@) (O) (D) :-S ;-( (C) (&) :-$ (E) (~) (K) (I) (L) (8) :-O (T) (G) (F) :-( (H) :-) (*) :-D (N) (Y) :-P (U) (W) ;-)