Способы разложения многочлена на множители.

Вынесение общего множителя за скобки.

Пример:

10·x2+x=10·x·x+1·x=x(10·x+1).

Метод группировки.

Примеры:

а) 10-5x+(2-x)2=5(2-x)+(2-x)(2-x)=(2-x)(5+2-x).

б) x3+4x2-9x-36=x2(x+4)-9(x+4)=(x+4)(x2-9).

Использование формул сокращенного умножения.

a2+2ab+b= (a+b)2

a2-2ab+b= (a-b)2

a2-b2=(a-b)(a+b)

a3+3a2b+3ab2+b3=(a+b)3

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

Примеры: 

а) x2+6x-7=(x2+2·3x+32-32-7)=(x2+2·3x+32-16)=(x+3)2-16=(x+3)2-42=(x+3-4)(x+3+4)=(x-1)(x+7).

б) x4-(x-10)2=(x2-x+10)(x2+x-10).

 

Разложение на множители квадратного трехчлена.

Правило:

Если ax2+bx+c=0 имеет корни x1 и x2, то его можно записать в виде: ax2+bx+c=a(x-x1)(x-x2).

Пример:

Разложить на множители 2x2+5x-3

Решим уравнение 2x2+5x-3=0.

D=25+4·2·3=25+24=49

x=0,5 или x=-3

2x2+5x-3=2(x-0,5)(x-(-3))=2(x-0,5)(x+3).

 

 

Вам будет интересно

Добавить комментарий

Ваш e-mail не будет опубликован.

:-[ (B) (^) (P) (@) (O) (D) :-S ;-( (C) (&) :-$ (E) (~) (K) (I) (L) (8) :-O (T) (G) (F) :-( (H) :-) (*) :-D (N) (Y) :-P (U) (W) ;-)