Теорема о трёх перпендикулярах.

Прямая, лежащая в плоскости, перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции наклонной на эту плоскость.

Доказательство.

Пусть прямая l лежит в плоскости γ, a — наклонная, a′ — её проекция на плоскость γ, прямая h — перпендикуляр к γ. Так как прямая h⊥γ, то hl. Проведём через прямые a и a′ плоскость β.

Пусть l a′ . Тогда, поскольку lh, по признаку перпендикулярности прямой и плоскости lβ, и, следовательно, la.

Обратно, если la, то, поскольку lh, имеем lβ, следовательно, la′.

Читать далее

Взаимное расположение прямой и плоскости.

Возможны три варианта взаимного расположения прямой и плоскости.

Прямая может быть параллельна плоскости, пересекать или принадлежать плоскости.

Параллельность прямой и плоскости.

Прямая и плоскость параллельны, если они не имеют общих точек.

Признак параллельности прямой и плоскости.
Если прямая a параллельна некоторой прямой, лежащей в плоскости, то прямая a параллельна этой плоскости.

Пересечение прямой и плоскости.

Прямая и плоскость пересекаются, если они имеют одну единственную общую точку, которую называют точкой пересечения прямой и плоскости.

Важным частным случаем пересечения прямой и плоскости является их перпендикулярность.

Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

Признак перпендикулярности прямой и плоскости.
Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.

Угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость.

Принадлежность прямой плоскости.

Прямая принадлежит плоскости, если каждая точка прямой принадлежит плоскости.

Читать далее

Взаимное расположение прямых в пространстве.

Две прямые в пространстве могут быть:

  • пересекающимися;
  • параллельными;
  • скрещивающимися.

Пересекающиеся прямые.

Две различные прямые называются пересекающимися, если они имеют общую точку.

Обозначение: ab=A (Прямые a и b пересекаются в точке A).

Угол между пересекающимися прямыми.
Угол между двумя пересекающимися прямыми – это мера меньшего из четырех углов, образованных этими прямыми.

При пересечении двух прямых образуются четыре угла. Если все углы равны друг другу, то прямые a и b называются перпендикулярными, и угол между этими прямыми равен 90°. Если не все углы равны друг другу, то углом между прямыми a и b является меньший из образованных углов.

Параллельные прямые.

Две различные прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.

Обозначение: a||b (Прямые a и b параллельны).

Параллельность обладает свойством транзитивности: две различные прямые, параллельные третьей прямой, параллельны между собой.

Скрещивающиеся прямые.

Две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Угол между скрещивающимися прямыми.
Пусть прямые a и b скрещиваются. Возьмем в пространстве произвольную точку N. Возможны два случая:

  1. Точка N не принадлежит ни прямой a, ни прямой b.
    Проведем через N прямую a', параллельную a, и прямую b', параллельную b. Прямые a' и b' пересекаются в точке N. Угол между прямыми a' и b' называется углом между прямыми a и b.
  2. Точка N принадлежит одной из прямых. Допустим, что Na. Проведем через точку N прямую b', параллельную b. Прямые a и b' пересекаются в точке N. Угол между прямыми a и b' называется углом между прямыми a и b.

Угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.

Читать далее

Формула включений и исключений.

Пусть |Ω| - общее количество объектов, а |Ai| - количество объектов, которые обладают свойством i, |A1∩A2| - количество объектов, обладающих свойствами 1 и 2,...,|A1∩...∩An| - количество объектов, обладающих свойствами 1,...,n. Тогда количество объектов, не обладающих ни одним из свойств равно:

Примеры решения задач

В летнем лагере 70 ребят. Из них 27 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов; 3 спортсмена посещают и драмкружок, и хор. Сколько ребят не поют в хоре, не увлекаются спортом и не занимаются в драмкружке

Решение:

70-27-32-22+10+6+8-3=10.

Ответ: 10 ребят не поют в хоре, не увлекаются спортом и не занимаются в драмкружке.


Сколько существует натуральных чисел, не превосходящих 1000, которые не делятся ни на 3, ни на 5?

Решение:

Натуральное число, которое делится на 3 можно представить в виде: 3·n, где n - натуральное число. Следовательно, 333 числа делятся на 3.

Натуральное число, которое делится на 5 можно представить в виде: 5·n, где n - натуральное число. Следовательно, 200 чисел делятся на 5.

Натуральное число, которое делится и на 3 и на 5 можно представить в виде: 15·n, где n - натуральное число. Следовательно, 66 чисел делятся на и на 3 и на 5.

1000-333-200+66=533.

Ответ: 533 числа не делятся ни на 3, ни на 5.


Сколько существует натуральных чисел, не превосходящих 1000, которые не делятся ни на 5, ни на 7?

Решение:

Натуральных чисел, которые делятся на 5: 200.

Натуральных чисел, которые делятся на 7: 142.

Числа, которые делятся и на 5 и на 7: 28.

1000-200-142+28=686.

Ответ: 686 чисел, не превосходящих 1000, не делятся ни на 5, ни на 7.


Каждая сторона в треугольнике ABC разделена на 8 равных отрезков. Сколько существует различных треугольников с вершинами в точках деления (точки A, B, C не могут быть вершинами треугольников), у которых ни одна сторона не параллельна ни одной из сторон треугольника ABC?

Решение:

На каждой стороне треугольника 7 точек. Всего можно построить 73 треугольников. У 3·72 треугольников одна из сторон параллельна одной из сторон треугольника ABC, у 3·7 треугольников –  две стороны, у 1 треугольника –  все стороны.

73-3·72+3·7-1=343-147+21-1=216.

Ответ: 216 треугольников.


В классе 30 учеников. Сколькими способами они могут пересесть так, чтобы ни один не сел на своё место?

Решение:

Общее количество пересаживаний равно: 30!.

Количество пересаживаний, когда 1 ученик остается на своем месте равно: 29!·(30!/(30-1)!/1!)=29!·30.

Количество пересаживаний, когда 2 ученика остаются на своем месте равно: 28!·30!/(30-2)!/2!=28!·30·29/2!

...

Количество пересаживаний, когда 29 учеников остаются на своем месте равно: 1!·30!/(30-29)!/29!=30.

Количество пересаживаний, когда 30 учеников остаются на своем месте равно: 0!·30!/(30-30)!/30!=1.

30!-29!30+28!·30·29/2!-...-30+1=30!(1-1/1!+1/2!-...-1/29!+1/30!)=30!(1/2!-...-1/29!+1/30!).

Ответ: 30!(1/2!-...-1/29!+1/30!).

 

Читать далее