Вневписанная окружность треугольника.

Вневписанная окружность треугольника. 1

Определение.

Окружность, касающаяся стороны треугольника и продолжения двух других его сторон, называется вневписанной окружностью треугольника.

Теорема 1.

Центр окружности, вневписанной в треугольник, есть точка пересечения биссектрис двух внешних и одного внутреннего угла треугольника.

Вневписанная окружность треугольника. 2

Доказательство.

BF — биссектриса ∠JBG, следовательно F равноудалена от сторон данного угла.

СF — биссектриса ∠JСH, следовательно F равноудалена от сторон данного угла.

Следовательно, точка F равноудалена от сторон ∠BAC.

Таким образом, точка F — центр окружности, касающейся стороны BC и продолжения сторон AB и AC. По определению данная окружность называется вневписанной окружностью треугольника.

Теорема 2. 

Отрезок, соединяющий вершину треугольника с точкой касания вневписанной окружности и противолежащей стороны, делит треугольник на два треугольника равного периметра.

Вневписанная окружность треугольника. 3

Доказательство.

BJ=BG, GC=CH и AJ=AH (свойство отрезков касательных, проведенных из одной точки к окружности).

PΔABC=AB+BC+AC=AB+BG+GC+AC=AB+BJ+AC+CH=AJ+AH.

Так как AJ=AH, то PΔABC/2=AJ=AH и PΔABC/2+AG=AJ+AG=AH+AG=AB+BG+GA=AC+CG+GA.

Следовательно, отрезок AG поделил треугольник ABC на два треугольника равного периметра PΔABC/2+AG.

Советую прочитать:

  1. Площадь треугольника через радиус вневписанной окружности;
  2. Лемма о трезубце.
Подробнее

Теорема Птолемея.

Теорема Птолемея. 4

Теорема. Произведение диагоналей четырехугольника, вписанного в окружность, равно сумме произведений противоположных сторон этого четырехугольника.

Доказательство.

Отложим от луча СD угол DCK равный углу ACB. CK∩DB=E. 

Рассмотрим ΔDCE и ΔACB:

  1. ∠δ=∠γ (вписанные углы, опирающиеся на дугу BC);
  2. ∠ε=∠ζ (по построению).

Следовательно, ΔDCE подобен ΔACB по 2 углам.

DC/AC=DE/AB=CE/CB.

Выразим DE через AC, AB и DC: DE=(DC·AB)/AC (1).

Рассмотрим ΔDCA и ΔBCE :

  1. ∠α=∠β (вписанные углы, опирающиеся на дугу DC);
  2. ∠DCA=∠ECB (по построению).

Следовательно, ΔDCA подобен ΔECB по 2 углам.

DC/EC=DA/EB=CA/CB.

Выразим EB через AC, CB и DA: EB=(DA·CB)/AC (2).

Сложим почленно равенства (1) и (2):

DE+EB=(DC·AB+DA·CB)/AC;

DB=(DC·AB+DA·CB)/AC;

DB·AC=DC·AB+DA·CB.

Подробнее

Теорема Вариньона.

Теорема Вариньона. 5

Теорема. Середины сторон произвольного четырехугольника являются вершинами параллелограмма, стороны которого равны половинам диагоналей данного четырехугольника, а площадь — половине площади данного четырехугольника.

Пример.

Теорема Вариньона. 6

Доказательство.

HE — средняя линия треугольника ABD. Следовательно, HE||BD и HE=0,5·BD.

FG — средняя линия треугольника BCD. Следовательно, FG||BD и FG=0,5·BD.

Следовательно, отрезки HE и FG равны и параллельны, следовательно HEFGпараллелограмм.

Докажем, что площадь параллелограмма HEFG равна половине площади четырехугольника.

Пусть BD∩AC=O, тогда

SABCD=0,5·AC·BD·sin∠BOC

SHEFG=HG·HE·sin∠EHG

Пусть EH∩AC=K, тогда ∠BOC=∠EKC как соответственные углы при параллельных прямых HE и BD и секущей AC.

∠EKC=∠EHG как соответственные углы при параллельных прямых AC и HG и секущей EH.

Следовательно, ∠BOC=∠EHG.

SHEFG=HE·HG·sin∠EHG;

SHEFG=HE·HG·sin∠BOC;

SHEFG=0,5·AC·0,5·BD·sin∠BOC;

SHEFG=0,5·0,5·AC·BD·sin∠BOC;

SHEFG=0,5·SABCD.

Подробнее

Площадь проекции плоской фигуры.

Определение 1.

Проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на плоскость, если точка не лежит в данной плоскости, и сама данная точка, если она лежит в этой плоскости. 

Определение 2.

Фигура, состоящая из проекций всех точек фигуры на некоторую плоскость, называется проекцией фигуры на эту плоскость.

Теорема. Площадь проекции плоской фигуры на плоскость ω равна произведению площади фигуры на косинус угла между плоскостью фигуры и плоскостью ω.

Подробнее