Окружность, касающаяся стороны треугольника и продолжения двух других его сторон, называется вневписанной окружностью треугольника.
Теорема 1.
Центр окружности, вневписанной в треугольник, есть точка пересечения биссектрис двух внешних и одного внутреннего угла треугольника.
Доказательство.
BF — биссектриса ∠JBG, следовательно F равноудалена от сторон данного угла.
СF — биссектриса ∠JСH, следовательно F равноудалена от сторон данного угла.
Следовательно, точка F равноудалена от сторон ∠BAC.
Таким образом, точка F — центр окружности, касающейся стороны BC и продолжения сторон AB и AC. По определению данная окружность называется вневписанной окружностью треугольника.
Теорема 2.
Отрезок, соединяющий вершину треугольника с точкой касания вневписанной окружности и противолежащей стороны, делит треугольник на два треугольника равного периметра.
Доказательство.
BJ=BG, GC=CH и AJ=AH (свойство отрезков касательных, проведенных из одной точки к окружности).
PΔABC=AB+BC+AC=AB+BG+GC+AC=AB+BJ+AC+CH=AJ+AH.
Так как AJ=AH, то PΔABC/2=AJ=AH и PΔABC/2+AG=AJ+AG=AH+AG=AB+BG+GA=AC+CG+GA.
Следовательно, отрезок AG поделил треугольник ABC на два треугольника равного периметра PΔABC/2+AG.
Ортоцентр — точка пересечения прямых, содержащих высоты треугольника.
Ортоцентр остроугольного треугольника лежит внутри треугольника.
Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.
Ортоцентр тупоугольного треугольника лежит вне треугольника.
Свойства:
Точка, симметричная ортоцентру относительно стороны треугольника, лежит на описанной около него окружности.
Точка, симметричная ортоцентру относительно середины стороны треугольника, лежит на описанной окружности и диаметрально противоположна вершине треугольника, противолежащей стороне.
Расстояние от вершины треугольника до ортоцентра в два раза больше расстояния от центра описанной окружности до противолежащей стороны.
Сумма квадратов расстояния от вершины треугольника до ортоцентра и длины стороны, противолежащей этой вершине, равна квадрату диаметра описанной окружности.
Радиус описанной окружности, проведенный к вершине треугольника, перпендикулярен соответствующей стороне ортотреугольника.
При изогональном сопряжении ортоцентр переходит в центр описанной окружности.
Ортоцентр в остроугольном треугольнике является инцентром ортотреугольника.
Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих равные радиусы описанных окружностей. При этом одинаковый радиус этих трех окружностей равен радиусу окружности, описанной около исходного остроугольного треугольника.