Окружность 9 точек.

В любом треугольнике основания высот, середины сторон и середины отрезков, соединяющих ортоцентр с вершинами, лежат на одной окружности с центром в середине отрезка OH и радиусом R/2.

Окружность 9 точек. 1

 

В треугольнике по отношению к описанной окружности окружность девяти точек может располагаться следующим образом:

  • Она касается описанной окружности в единственном случае, если треугольник прямоугольный. При этом касание двух окружностей идет в вершине прямого угла треугольника.
  • Она целиком лежит внутри описанной окружности, если треугольник остроугольный.
  • Она пересекает описанную окружность в двух разных точках, если треугольник тупоугольный.

Утверждение 1:

Треугольники ABC, HBC, AHC, ABH имеют общую окружность 9 точек.

Утверждение 2: 

Прямые Эйлера треугольников ABC, HBC, AHC, ABH пересекаются в одной точке.

Утверждение 3:

Центры описанных окружностей треугольников ABC, HBC, AHC, ABH образуют четырехугольник, симметричный четырехугольнику ABCH.

Подробнее

Прямая Эйлера.

В треугольнике центр описанной окружности, ортоцентр и точка пересечения медиан лежит на одной прямой, и расстояние от центра описанной окружности до ортоцентра в три раза больше расстояния от центра описанной окружности до точки пересечения медиан.Прямая Эйлера. 2

Доказательство:

Пусть Н — ортоцентр, M — точка пересечения медиан, O — центр описанной окружности.

Треугольники ABC и EFD подобны по трем сторонам с коэффициентом подобия 2.

AH/EO=2/1 (отрезки высот подобных треугольников).

AM/ME=2/1 (свойство точки пересечения медиан треугольника).

Следовательно, AH/EO=AM/ME.

Пусть G — точка пересечения отрезков AE и OH. 

Треугольники OEG и HAG подобны по 2 углам. Следовательно, GH/GO=AG/GE=AH/EO=2/1.

Следовательно, M=G.

Следствие 1:

Центр окружности, описанной около треугольника DEF является серединой отрезка OH.

Следствие 2:

Расстояние от вершины треугольника до его ортоцентра в два раза больше, чем расстояние от центра его описанной окружности до середины противолежащей стороны.

Подробнее

Формула Эйлера.

В треугольнике OI2=R2-2Rr, где I — точка пересечения биссектрис (центр вписанной окружности), O — центр описанной окружности, R — радиус описанной окружности, r — радиус вписанной окружности.

Формула Эйлера. 3

Доказательство:

Пусть AM — хорда описанной окружности, проходящая через точку I.

Тогда по теореме о пересекающихся хордах: AI·IM=(R+OI)(R-OI).

Из треугольника AIH по определению синуса: AI=r/sin(α/2).

Из треугольника MAC по теореме синусов и лемме о трезубце: CM=2Rsin(α/2)=IM.

Подставим полученные равенства в AI·IM=(R+OI)(R-OI):

r/sin(α/2)·2Rsin(α/2)=R2-OI2

2Rr=R2-OI2.

Следовательно, OI2=R2-2Rr.

Подробнее

Лемма о трезубце.

Пусть продолжение биссектрисы BD треугольника ABC пересекает описанную окружность в точке M; O — центр окружности, вписанной в треугольник ABC; W — центр вневписанной окружности, касающейся стороны AC.

Тогда MA=MO=MC=MW.Лемма о трезубце. 4

 

Доказательство:

Пусть ∠BAC=2α, а ∠ABC=2β.

Следовательно, ∠BAO=∠OAC=α, а ∠ABO=∠OBC=β (центр вписанной окружности треугольника — точка пересечения биссектрис треугольника).

∠AOM=∠BAO+∠ABO=α+β (свойство внешнего угла Δ ABO).

∠OAM=∠OAC+∠CAM=∠OAC+∠CBM=α+β (свойство вписанных углов, опирающихся на одну дугу).

Следовательно, ∠AOM=∠OAM. Δ MAO — равнобедренный, MA=MO.

Аналогично доказывается равенство: MO=MC.

Докажем, что MA=MW.

∠OAW=90° (угол между биссектрисами смежных углов).

∠AWM=90°-∠AOM (свойство острых углов прямоугольного треугольника)=90°-∠OAM=∠MAW.

Следовательно, ΔMAW — равнобедренный, MA=MW.

Подробнее