Теорема о трёх перпендикулярах.

Прямая, лежащая в плоскости, перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции наклонной на эту плоскость.

Доказательство.

Пусть прямая l лежит в плоскости γ, a — наклонная, a′ — её проекция на плоскость γ, прямая h — перпендикуляр к γ. Так как прямая h⊥γ, то hl. Проведём через прямые a и a′ плоскость β.

Пусть l a′ . Тогда, поскольку lh, по признаку перпендикулярности прямой и плоскости lβ, и, следовательно, la.

Обратно, если la, то, поскольку lh, имеем lβ, следовательно, la′.

Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments